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1 Introduction 

This document investigates the theory behind the ‘Tandem Bridge’.  The bridge consists of only two components yet it is 
very complex and tedious to analyse.   

 

Figure 1 - The Basic Tandem Bridge 

The tandem bridge is a compromise. The level of return loss depends upon on the winding inductance and the mutual 
coupling between them.  At no time does the reverse voltage ‘Vr’ ever fall to zero even when the load is exactly 50Ω.  This 
circuit does not balance as such.  Observation of the circuit suggests that this bridge must also introduce an impedance 
change in the transmitter path.  However, the tandem bridge is an excellent performer and deserves full analysis. 

  

2 Key Equations 

These four expressions define the key performance parameters of a Tandem bridge: 

 

Reverse Voltage: 
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Forward Voltage: 

 21

2

1

11 k
R

L
j

L

L
kVV

V
or

f







        (Volt)  Equation 12 

 

 

Input Impedance: 
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Appendix A of this document provides a derivation of Equations 12, 13, 14 and 15 (if you are keen).  I avoided the further 
simplification offered by replacing the inductor values with the expressions involving the turns ration N. The inductor values 
will change with frequency and are more fundamental than the turns ratio N.  I also avoided expressing the complex terms 
in canonical form - it is just not worth the time and effort, particularly when the expressions will be machine calculated.  

 

2.1 Minimum Reflected Signal 
Equations 13 can be simplified by making assumptions.  Assume that the coupling function k = 1, Vo=1 and the output 
impedance Z = R.  Under these ‘balanced’ conditions equation 13 becomes: 
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As the frequency increases: 

 

RLj 1  and RLLj  )2( 12   

 

So 

 

 11 LjLjR    and )2()2( 1212 LLjLLjR   respectively.    

Hence, the minimum level of rV is determined by the inductance values alone.  Since the bridge must be practical with 

realistic inductance values, the minimum reflected level of the Tandem bridge is finite - the bridge never balances.   The 
following expression illustrates the limit. 

   

)2( 12

2

1
1

LLj

L

L
Lj

Vr 







 

 

Assuming 12 LL   (In fact it is N x N larger where N is the turns ratio) 
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The negative sign indicates that the reflected signal is antiphase relative to the output signal.  To be sure, I investigated an 
LTspice evaluation using ‘transient’ analysis and confirmed that both the forward and reverse signal appeared in antiphase 
compared to the output signal. 

As an example, if a Tandem bridge employs cores with a turns ration N=11 and the inductance of a single turn on the ferrite 
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2.2 Forward Signal at Minimum Reflected Value  
The forward voltage expression simplifies if k=1 and Vo=1.  Also, if the reflected signal is low compared with the output 
voltage i.e.  at -68.5dB then:  
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Hence, for N=11, the very best return loss is -47.67 dB. 

 

2.3 Verification of Equation 12 and Equation 13 
Equation 12 and 13 requires verification. One way to do this is to test the results against validated circuit simulation 
software that calculates similar results using a different but equivalent technical approach.  I employed LTspice which is 
very capable and free.   Inductors in LTspice are defined using mutual inductance in the same way as they are defined in 
equations 12 and 13, enabling an exact comparison.  LTspice, of course, calculates numerical values that are presented on a 
graph. These need extracting using the cursor and the computer status bar.    

 

Figure 2 - LTspice Implementation of a Tandem Bridge 

In the above LTspice example, if k=0.99, L1 =2.3μH, L2 = 278.3 μH (N=11) and f = 2MHz, then the forward, reverse and 
output signals calculated by LTspice are: 

Output signal = - 6.057 dB  (The output is effectively divided in half by R1 and R4) 
Forward signal = - 26.936 dB 

Reverse Signal = - 74.144 dB 

 
Relative to the output signal (Add 6.057 dB to all three): 
 
Output signal = 0 dB 

Forward signal = - 20.879 dB 
Reverse Signal = - 68.087 dB 

Return Loss = - 47.208 dB 
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The calculation of equations 12 and 13 is best performed using capable mathematical software.  The easiest and most 
universal way is probably Python or C.  Any method will do as long as the complex numbers are properly implemented. It is 
best to avoid spreadsheets unless you have lots of time to spend and masochistic tendencies. 

For this document, I used ‘Mathcad’ which is a bit specialised but it provides a WYSIWYG representation.  This is easier to 
follow than lines of ‘C’ code. 

As an example: 

 

 

Figure 3 - Mathcad Evaluation - Verification 

The above Mathcad sheet uses the same parameters as the LTspice simulation to calculate the forward and reflected 
voltages.  The results are correct to at least 2 decimal places.  Similar calculations using different loads, different k values 
and different frequency always gave comparable results.  I conclude therefore that equations 12 and 13 are probably 
correct.  (I say probably because these equations give steady state values and do not include transient terms that following 
immediate activation of the circuit). 
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2.4 Tandem Bridge - Return Loss - Verification 
Does the Tandem bridge provide an accurate rendition of return loss?  For a transmission system with an arbitrary 
termination, the reflection coefficient at an impedance discontinuity is described as: 
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For the Tandem Bridge, the reflection coefficient is similarly described as 
f
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V
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In both cases, the Return Loss in dB is:  log.20RL  

Using k=0.99, L1 =2.3μH, L2 = 278.3 μH (N=11) and f = 2MHz as an example.  The return loss for a range of Z (the load) can 
be plotted.  The following Mathcad sheet does this for a range of Z real values from 0 to 200Ω.  Complex imaginary values 
for Z can be added - in this example it is set to +j1.  Figure 4 shows the results for a near resistive load.  
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Figure 4 - Mathcad Worksheet - Reactance of +j1Ω (Essentially Resistive Load) 

Figure 4 shows the theoretical return losses and the values returned by the Tandem Bridge.  They appear very close.  The 
reactive part of the load impedance ‘Z’ was set to + j1Ω for convenience to avoid divide by zero errors.  However, the 1Ω 
reactive component reduced the return loss from -47dB at Z=50Ω to -40dB at Z = 50 +j1Ω!  The bridge is very sensitive! 

 

 Figure 5 - Mathcad Worksheet - Reactance of +1Ω (Essentially Resistive load) 

Figure 5 shows the theoretical and the Tandem bridge return loss for Z= (0 to 200) - j100Ω.  Again, the two values are very 
close.  I conclude that the Tandem bridge provides a good representation of the forward and reflected signals. This 
conclusion is intuitive - the signals at the forward and reflected port are just a transformer-reduced constructs of the 
primary circuit. 
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2.5 Tandem Bridge - Input Impedance - Verification 
The input impedance of the bridge can be calculated using equation 14: 
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This can be verified against an LTspice simulation.  For example, using the same parameters as before:   k=0.99, L1 =2.3μH, 
L2 = 278.3 μH (N=11), Z=50Ω and f = 1 to 50 MHz, the Mathcad sheet calculates the input impedance and plots it onto a 
graph against frequency. 

Input impedance results from the LTspice simulation were taken manually at 2, 10, 20, 30, 40 and 50 MHz using the graph 
and status bar.  These were plotted onto the same Mathcad graph and shown as blue circles.  

The results were identical to three decimal places or more.  At low frequencies, the input impedance magnitude of the 
bridge is less than 50Ω probably due to the shunting effect of L2 across the output.  At higher frequency, the series 
impedance of L1 starts to dominate.   

The input impedance is easily converted into VSWR. For the condition stated, such a bridge would provide an insertion 
VSWR of less than 1.2 at frequencies below 30MHz.   

The data provided here is for verification only.  The evaluation of a practical bridge can be made based on real inductors 
and real ‘k’ values.  

 



Tandem Bridge Theory 
Chris G4AKE 

 

March 2020  Page 9 of 20 

 

Figure 6 - Mathcad Calculation of Input Impedance 
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Figure 7 - Tandem Bridge - Input impedance and Input VSWR 

 

2.6 Tandem Bridge - Insertion Loss - Verification 
The insertion loss of the bridge can be calculated using Equation 15.   This can be verified against an LTspice simulation.  For 
example, using the same parameters as before:   k=0.99, L1 =2.3μH, L2 = 278.3 μH (N=11), Z=50Ω and f = 1 to 50 MHz, the 
Mathcad sheet calculates the insertion loss and plots it onto a graph against frequency. 
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Figure 8 - Equation 15 and LTspice Provides Identical Results 

The results are essentially identical.  I conclude the four equations 12, 13, 14 and 15 give an accurate mathematical 
description of a Tandem bridge. 
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3 Appendix A - Outline of a Proof for Equation 12, 13, 14 and 15 - Preliminaries 

Mutual inductance is necessary to analyse coupled circuits.  To be successful, it is essential to follow a set of rules and 
remain consistent in applying signs throughout.  It is necessary to guess the initial current directions and then calculate 
associated voltages accepting that some guesses may be incorrect. If the analysis is consistent and applied robotically, the 
analysis works out correctly in the wash.  The voltages induce into windings come in two forms: 

  (1) self-induced voltages (you could call these back-emfs if you have too); and  

  (2) mutually induced voltage that are generated by changing currents in the other winding. 

The relative polarities of the voltages are described by the dot convention as shown in Figure 9.  Of course, all voltages and 
currents are assumed RF sinusoids. 

 

Figure 9 - Application of the Dot Convention 

Transformer Dot Convention for mutual inductance is described in words as: 

- If a current ‘enters’ into the dotted terminal of a coil, then the polarity of the induced voltage in the other coil is positive at 
its dotted terminal. 

 - If a current ‘leaves’ the dotted terminal of a coil, the reference polarity of the voltage induced in the other coil is negative 
at its dotted terminal. 

Explanation: 

In the time domain, the self-induced and mutually induced voltage depend on the rate of change of current.  For example, 
the voltage induced in winding L2 due to the current I1 is: 

 
dt
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MtvL

1
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In the frequency domain, this becomes: 

  12 MIjv L     Volts  

 Here, ‘j’ is the complex operator 1j .  

Similarly, the voltage induced into coil L1 by the current I1 is:  
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dt
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In the frequency domain: 

  111 ILjvL     Volts  

The text book definition for mutual inductance ‘M’ is as follows:  21LLkM    where k is a number in the range 0 to 1.  

A value of   k = 0 implies no coupling whereas k = 1 suggests very tight coupling.  For example, tightly twisted wires wound 
on a closed ferrite high permeability core will probably have a k value higher than 0.99. 
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4 Tandem Bridge Analysis 

Figure 10 shows the basic arrangement of the Tandem Bridge connected with 50Ω loads on the forward and reverse ports.  
Complexity occurs because transformers generate voltages in response to current changes.  The method used to analyse 
the bridge is to add up the port voltages and systematically eliminate each of the currents.  This results in a lot of tedious 
complexity.  The following diagram shows a possible guess at currents at a given time instance and the associated induced 
voltages. 

 

Figure 10 - Tandem Bridge Complete with Induced Voltages 

 

Summing up the voltages across the forward power port resistor: 

fsabf ILjMIjMIjILjV 12           Equation 1 

 

And, at the reflected power port: 

 

abr MIjILjV   2          Equation 2 

 

So, substituting equation 2 into equation 1  
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So 
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Also, at the output port: 

 

Lsa III     and  
Z

V
I o
L         Equation 7 

So 

Z

V

RL

MV

Lj

V
I ofo
a 

22
       Equation 8 

 

Now the preliminaries are complete, find the forward voltage term rV  by substituting equation 4 and 8 into equation 2 

 

abr MIjILjV   2         Equation 2 

 

















 


Z

V

RL

MV

Lj

V
Mj

R

VV
LjV oforf

r
22

2 
   

Multiply out and separate terms 

 

2

2

2

2
21

L

MV

Z

MVj

R

Lj

RL

Mj
V

R

Lj
V oo

fr 














 


   Equation 9 

So 

 

R

Lj
L

MV

Z

MVj

R

Lj

RL

Mj
V

V

oo
f

r
2

2

2

2

2

1
















      Equation 10    **** 



Tandem Bridge Theory 
Chris G4AKE 

 

March 2020  Page 15 of 20 

Equation 10 will be needed later.  Now substitute equation 6 and 
R

V
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f  into equation 3 
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Collect terms and tidy up 
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It is apparent that when rV is small and k=1 then 
2

1 
L

L
VV of  .  That is an antiphase version of the output signal 

reduced by a factor determined by the transformer turns ratio.  Equation 9 and equation 11 are simultaneous solutions.  For 

a given oV , fV or rV  can be calculated. 

Get the reflected voltage rV : 

Substitute equation 12 into equation 9 
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To keep this on the page, the LHS of the above equation is calculated first: 
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





R

Lj

RL

Mj
Vr

2

2

2 
 

 

So, after collecting terms 









 2

12
2

2

22
21

2

2 22
1

R

LL

R

M

R

L
j

R

L
j

RL

M
jVLHS r

  

 

Substituting 21LLkM   









 2

21
2

2
21

22
21

2

21
2 22

1
R

LL

R

LLk

R

L
j

R

L
j

RL

LLk
jVLHS r

  

 

Tidying up 
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  






 
 2

2
21

2
212 )1(

21
2

1
R

kLL
k

R

L
j

R

L
jVLHS r

  

 

The RHS is (Remember two terms were transferred to the LHS a few lines up): 





























R

L
j

RL

M
j

L

MV

Z

MVj

R

Lj

RL

Mj

L

MV
RHS ooo 1

2

2

2

2

2

2

2

1 
 

 

Multiplying out: 











2

1

22

3

2

1
2

2

3
2

22

3

RL

VML
j

LRL

VM
j

L

MV

ZR

VML

ZRL

VM

Z

MVj

R

MV
j

LRL

VM
jRHS oooooooo   

2

1

22

3

2

1
2

2

3
2

22

3

RL

VML
j

LRL

VM
j

L

MV

ZR

VML

ZRL

VM

Z

MVj

R

MV
j

LRL

VM
jRHS oooooooo    

 

Tidy up – one miserable term cancels! 

2

1

2

12

2

3
2

RL

VML
j

L

MV

ZR

VML

ZRL

VM

Z

MV
j

R

MV
jRHS oooooo    

 

Substituting 21LLkM   

 

2

121

2

211212

2

2121
3

22121

RL

VLLLk
j

L

VLLk

ZR

VLLLk

ZRL

VLLLLk

Z

VLLk
j

R

VLLk
jRHS oooooo    

 
2

101

2

122112
21 1

11

L

L

R

VkL
j

L

L
kVk

ZR

VLLkL

ZR
VLLkjRHS o

o
o  






   

 

Now RHS and LHS are complete, the final expression for fV  is given by 

 

 

 
2

2
21

2
212

2

101

2

122112
21

)1(
21

2
1

1
11

R

kLL
k

R

L
j

R

L
j

L

L

R

VkL
j

L

L
kVk

ZR

VLLkL

ZR
VLLkj

V
o

o
o

r 








 





 

 

Finally, multiply top and bottom by R.  This could be tidied up further.  However, it is too complex to calculate by hand and

rV  will never be beautiful so I fail to see the advantage. 

The Final equations: 
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 

  )1(212

11

221
2

2
12

2

1
1

2

122112
210




















 


k

R

LL
kLjLjR

L

L
kLj

L

L
kRk

Z

LLkL

Z

R
LLkjV

Vr 



     Equation 13*** 

 

 21

2

1

11 k
R

L
j

L

L
kVV

V
or

f







          Equation 12*** 

 

 

4.1 Input Impedance and Insertion Loss 
Repeating the Tandem bridge voltage diagram: 

 

Input Impedance 

The input voltage vin is: 

bain MIjILjVV   10    

The input impedance 
a

in
in I

V
Z   

So 

1
0  

 
Lj

I

MIjV

I

V
Z

a

b

a

in
in 





  

Substituting for  
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Z

V

RL

MV

Lj

V
I ofo
a 

22
       Equation 8 - See earlier in this document 

 

And  

 

 
R

VV
III rf
rfb


       Equation 4 - See earlier in this document 

 

Hence 

1

22

0

 

 

Lj

Z

V

RL

MV

Lj

V

R

VV
MjV

Z
ofo

rf

in 















 


  

 

Substituting 21LLkM   

 

1

2

21

2

210  

Lj

Z

V

RL

VLLk

Lj

V

R

VV
LLkjV

Z
ofo

rf

in 















 


     Equation 14 

 

Insertion Loss: 

Start with the input voltage: 

 

bain MIjILjVV   10    

 

Substitute Equations 8 and 4: 

 








 










R

VV
Mj

Z

V

RL

MV

Lj

V
LjVV rfofo

in   
 

 
22

10 


  

 

The insertion loss in dB is  













in
L V

V
I 0 log.20  
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or 




























 












R

VV
Mj

Z

V

RL

MV

Lj

V
LjV

V
I

rfofo

L

  
 

 

 log.20

22
10

0





 

 

Finally, substitute 21LLkM   

 






























 


















R

VV
LLkj

Z

V

RL

VLLk

Lj

V
LjV

V
I

rfofo

L

  
 

 

 log.20

21
2

21

2
10

0






  Equation 15 

 

 

End of document - phew 


